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We develop methods and present results for the solution of  inverse problems of  heat conduction in 
connection with the simultaneous determination of thermophysical characteristics and heat exchange 
parameters. 

Introduction. In [1, 2] studies were made concerned with the possibility of an iterational filter for solving 
inverse problems in connection with the determination of  a heat transfer parameter or a thermophysical characteristic 

(TPC); to do this, exterior or interior inverse problems of  heat conduction (IPHC) were solved. Meanwhile, in the 

study of thermal processes in energetics, metallurgy, and other branches of technology, one frequently requires the 

simultaneous determination of several external and (or) internal parameters of thermal systems. Thus, for  example, 

identification of a thermal flow q(r) (heat transfer coefficient  a(r)) on cooling surfaces during the rolling of crude 

metals or the continuous casting of rods is not possible without reliable data on TPC, information concerning which 

can be of an extremely approximate nature. The necessity of solving combined IPHC in connection with the 

simultaneous determination of  A(T) and a(r)(q(r)) or cv(T) and ~(r)(q(r)) also arises when there is no reliable data 

on thermal flows (heat transfer coefficients and temperature T e of the medium) for fully specifying boundary 

conditions for the solution of  interior IPHC. It becomes necessary in this case to have knowledge of unknown heat 
transfer characteristics in the vector of identifying parameters. 

Of most importance in the solution of  IPHC are questions relating to idenfifiability of  mathematical models. By 

idenfifiability we mean the possibility of  determining the parameters of a model while preserving a one- to-one 

correspondence between them and the vector state. Studies made in [3] show that determination of  the functions )~(T) 

and cv(T ) or A(T), cv(T), and q(r) (or cx(r)) is possible when at least one of the given boundary conditions (BC) 

contains caloric quantities: q(x, y, z, r) in a BC of the second kind, a(x, y, z, r) in a BC of  the third kind or a(T) in a 

BC of the fourth kind (a necessary condition of identifiability). But if  only zero BC of the second kind and (or) BC of 
the first kind are known, it is then necessary to specify at least one particular (frame of reference) value of the 
identifying functions. 

Questions relating to uniqueness of a solution, closely connected with identifiability, will be discussed below 
after the introduction of  studies of initial models of  the IPHC being solved. 

As a basic method we employed a pointwise identification of thermal parameters (individual values of  the 
unknown functions are determined at each instant of  time) without requiring a preliminary approximation of 

identifying parameters. We have demonstrated in [2, 4] the advantage of  such an approach in the search for external 
and internal thermal parameters with use of an iterational filter. 

With pointwise identification of BC and TPC, the unknown characteristics q(r), ~(r), and Te(r): are 

determined for each section of the heat exchange boundary, while the parameters )~(T) and Cv(T ) are determined as 

functions of  some mean-integral  temperatures Tin, the method for choosing which was established in [2]. 

As an initial mathematical model for the solution of listed IPHC using a pointwise identification, we use the 
usual f in i te-di f ference approximations for the heat conduction equations and boundary conditions. A search of the 

width matrices appearing in computational procedures involving an algorithm of filtration requires modification of 
these equations amounting to a conversion of the unknown parameters into a state vector [4]. Examples of such 

conversions, used in the identification of A(T) and cv(T), are given in [2]. It becomes necessary here to write the 
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Fig. 1. Effect of measurement errors on the solution of a combined IPHC. ~ ,  

W/(m~.K); q, W/m~; A, W/(m.K), r, see, T *C. 
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Fig. 2. Solution of combined IPHC with respect to identification. ;~(T), W/(m-K), a ( r ) ,  W/(m~'.K). 
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Fig. 3. Solution of internal IPHC. c v, J/(m2-K). 

transformed finite-difference equations of heat conduction and BC of the second and third kinds for solution of 
multi-parameter internal and combined IPHC. Thus, in the identification of ;~(T) and q ( r )  (or ~(r)), the indicated 
equations are written with O ( h  ~ + At) precision in the following way (for simplicity we take the one-dimensional ease 
with uniform grid, and the unknowns A(Ti), unlike those in [2], are replaced by ~ra = ~(Tm): 
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Fig. 4. Identif ication of  A(T) and cv(T) for various values of  mean-square error a. 
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Fig. 5. Simultaneous identification of  three thermal parameters ~(T), cv(T),  and a(r). 
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For simultaneous identif ication o f  cv(T ) and q ( r )  (or c,(r)) we obtain the fol lowing expressions (analogous to the 
preceding, cv(Ti) is replaced by Cvm = cv(Tm)): 

],.+1 ..> ] 
h2 ~ " h2 dk+l /h+i) l  
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To construct the coefficients in equations (1)-(6) at the (k + 1)-st time step we use predictors from the (j  - - / ) - s t  to the 
j th  iteration for the value of the temperature (7"i)k+l/k+i(j/j-l). In these equations T b and TIN are, respectively, 
temperatures on the boundary and at the closest interior node; h and Ar are steps in the spatial and time coordinates; 
S is the number of iterations at the kth time step. 

It is necessary to turn our attention separately to a simultaneous search for the thermal conductivity A(T) and 
the specific volumetric heat capacity cv(T ). In this case the heat conduction equation, after transformations, will have 
the form 

I ~ '(i"/-1) I ( ~ r a  [ : ~ , ( j / : - , )  " (s~ ( T , - k l -  2f~i ~ li-1}h+l/k~-l' . :h+, '(j) - -  ~"I i)k+I/h+IAT,-- (T i )k / "  j -J "(CVnl]k--I'(/) --- O) 

from which a decision can be made concerning degeneracy of the matrix formed from coefficients of the heat 
conduction equations and the boundary conditions. To eliminate this negative fact a step-by-step search is made for 
A(T) and cv (T) .  The essence of it is as follows. From some considerations, one specifies an initial approximation 

after which a search is made for (~m)1/1 in accordance with the method given in [2]. Following this, the (3Vm)O/O, 
quantity (~Vm)l/1 is determined similarly, having found (~m)lD" This iterational process is repeated at each time step 
so long as the norms ][ (~m)k/k (~) - -  (~m)k/k ( t - l )  1[ and ]1 (CVm)k/k (s - -  (CVm)k/k ( t - l )  [[ are not less than some given s 1 
and s 2 (here I and l --  1 are the numbers of two successive steps). This kind of method makes it possible to find ~t(Tm) 

and cv(Tm) with sufficient accuracy. 
The advantages of the pointwise identification over the polynomial identification most frequently used 

becomes obvious if  one considers at least some features of both types of identification. In the first place, accuracy in 
identifying the coefficients of a polynomial describing an unknown dependence depends essentially (when several 
characteristics are being determined simultaneously) on choice of the initial approximations for these coefficients (a 
large error in the choice of the initial estimates leads to oscillatory results). In pointwise identification the final 
solution is, in fact, independent of the initial approximation. Secondly, polynomial approximation does not allow one 
to carry out identification into the real time scale since sufficiently accurate estimates of the unknown coefficients can 
only be obtained at the end  of the identification process, whereas, when characteristics are obtained pointwise, reliable 
values of the parameters may be determined at each instant of time. And, finally, in the third place, with polynomial 
identification there is unavoidable contradiction between accuracy of results and the stability of the solution of an ill- 
posed problem (as the degree of the polynomial increases, the accuracy gets better; however, from a certain moment 
on, a loss of stability is possible). With the pointwise approach, stability may be achieved by stopping the iterational 
process within each stage according to agreement of the total residual value with errors in the initial data, i.e., 
practically in accordance with the principle of the residual [5]. Of course, it is difficult  to speak here about a complete 
agreement with the principle of the residual since for satisfaction of this principle we need, not a recurrent (stepwise) 
calculational procedure, but an algorithm operating over the whole time interval. However, in the problem being 
described (as in many of our earlier solutions [1-4]), instabilities in solutions were not observed when the indicated 
stoppage of the iterational process was used. In identifying more nonlinear relations in multi-dimensional formulations 
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of IPHC, it is possible to increase stability with use of the step regularization procedure described here. Similar studies 
are being conducted by us at the present time. 

Returning to the computational procedure for solving IPHC, we note that after completion of the solution at 

the next time step the diagonal elements of the covariance matrix Pk/k  are recovered to their original values (where, 

usually, the dispersions corresponding to A(T) and cv(T ) are distinct). The non-diagonal elements of this matrix 
(correlation moments) are calculated from the usual expressions [I, 4]. As for passage from step to step within a time 
stage, we then employ covariant matrices here each time, these being obtained at the end of the last stage, depending 
on the determination, respectively, of A(T) or cv(T) at the preceding stage (or the initial matrices if this is the first 
stage). 

The initial equations at each of the steps will have a different form. Thus, at the step of identification of A(T), 
the equations will have the form (1) from substitution into the coefficients the estimate (~vmn)k+l/k+:(J/Jl), obtained 
at the preceding step. But at the step involving identification of cv(T), this equation will have the form (4) with 
coefficients depending on the quantities (~mn)k+I/k+10/J-1), obtained at the step involving determination of A(T). 
Similar procedures are also carried out with the equations of the boundary conditions. 

We now examine the possibilities of the method proposed for simultaneous determination of the three heat 
transport parameters: thermal conductivity A(T), specific volume heat capacity c v ( T ) ,  and the heat transfer coefficient 
a(r) or the thermal flux q(r). 

Taking into account the approach presented above for simultaneous identification of A and c v, we seek the 
TPC stepwise, and the BD at an arbitrary one of the steps simultaneously with A(T). Here the initial equations will 
have the form (1)-(3) with corresponding substitution of the quantity (~vmrl)k+l/k+l(J/J -1) into the coefficients. Then 
at the second step of identifying cv(T ) the heat conduction equation remains in the form (4), while the expression for 
the BC of the third kind can be written as follows: 

.... ] i ir (%m 'h~-i, h+ , ~ ^ ~ , ( i , ' ] - ~ )  ~(1) V~m)h+l"h+I ~T- )(]) 
' ] h + l  , [ h 7-Vz )h+ ,&§ (Tb -- h t INh+1 @ 

§ 
r,"~. ,,(//i--1) )(S). htt D ]~@1/,k@l (Tb - -  A~ ,' h l 

2A~ 
x(i) l^n~(l,J -1)  (cvm Ih+l = ~o: ~k+I/h+l (Tc)h+a. 

(7) 

Here &II is the estimate for a obtained at the preceding stage of the (k + 1)-st time step. 

The dimensions of the covariant matrix of errors of estimates of Pk/k  and, correspondingly, of all the other 
matrices appearing in the filtration algorithm, are different for different stages. Thus, if at the first stage the 
dimension of matrix Pk/k  is n x n, then at the second stage it will be (n -- 1) x (n -- 1). As for variations in the number 
of elements of these matrices at the various stages, all that was said in this context, when the discussion concerned 
identification of A(T) and cv(T ) remains valid. 

It is necessary to say something concerning uniqueness of a solution of multi-parameter IPHC. A necessary 
condition for the possibility of simultaneous determination of several thermal parameters is the following. The number 
of unknowns in the space-time grid (discrete approximation of the heat conduction equation and boundary conditions) 
must not exceed the number of nodes in the measurements multiplied by the number of time steps. In other words, the 
general number of equations of measurements (in the space-time sense) must not be less than the number of 
parameters being identified. 

Sufficient conditions for uniqueness of a solution of multi-parameter IPHC were given in [6-8]. 
Thus, for a thermal model with boundary conditions of the second and third kind [7] 

0 {~,(T)d@} OT 
Ox = cV (T) &c ' 

07" (o, T) OT (1, ~) 
== O; s (T) - = q (~c) 

Ox Ox 

(8) 

(9) 

a solution of the problem of identifying )~(T) and cv(T ) is unique in the class of piecewise-analytic functions for 
temperature measurements on the boundaries. 
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For thermal measurements at internal points of a body the uniqueness of  mult i-parameter  problems for 

identification of A(T), Q(T), and q(r) was studied in [8] (Q(T) are internal heat sources). It was shown there that the 

parameters A(T) and Q(T) are uniquely determined only in an interval between the minimum and maximum 
temperatures being measured even under a condition of  monotonicity (piecewise monotonicity) of  the temperature 

function. Outside of  this interval the parameters being identified may not be determined uniquely. Apparently, 
however, if  beforehand,  or in the process of  a numerical experiment,  monotonicity or piecewise-monotonicity of the 

parameters being identified is found to be the case, we can then speak about uniqueness in their determination. 
Returning to the model (4)-(7), we note that all the foregoing also applies to single-parameter IPHC considered 

here in connection with simultaneous determination of  thermophysical characteristics or thermal conductivity and heat 

transfer coefficients. 
It is necessary to dwell separately on the simultaneous search for  A, Cv, and o~. The stepwise search for the 

parameters proposed here makes it possible to identify simultaneously only two parameters (a and A), following which 

the third (c B) can be identified. Therefore,  the uniqueness conditions introduced here will also be valid. More to the 

point, the stepwise nature of  the search for ~ and c v in connection with their pointwise identification does not permit 

posing the question concerning uniqueness of a simultaneous determination of TPC (only satisfaction of the first, 

necessary, condition of  agreement of  the number of  measurement equations and the number  of parameters being 

identified is required). 
A solution of  test problems allowed us to study possibilities of  the proposed method and to estimate limits of 

regularity of the algorithms. As the object of investigation (combined IPHC were studied) we selected an infinite plate 

of thickness L = 0.1 m. "Measurements" were obtained by solving a direct problem with the following TPC: 

(T) = 400 - -  0,2T (W/re'K)); 

1,5.106 q- 8-103T (J/(na 2"K)); T ~ .  683~ 

cv(T ) =  1 , 2 4 2 8 . 1 0 ~ 8 . 1 0 3  T (J/(m2-K)); T ~ 6 8 3 ~  

On one of  the surfaces homogeneous boundary conditions of  the second kind, )~(T)(OT/Sx)~= o = 0, were 

specified; on the other surface we specified a BC of  the third kind: )~(T)(aT/ax)~= L = a(T -- Te); a(r) = 25 + 
r(W/(m.K)); Tr = 1400"C. Steps of  the space-time grid were: h = 0.01 m, Ar = 20 see. In solving IPHC, to determine 

the effect  on regularity of  solutions of  a measurement error we varied the latter f rom 0.4% to 3% of Tma x. Initial 

estimates of  the parameters )~(T), ~(r), and T, being identified, were selected fairly arbitrarily (~o/o = 320; &pip = 60; 

T0/o = 280). Results of  the identification are shown in Fig. 1, where curves 1, 4, 7 (solid lines) correspond to nominal 

values of characteristics; curves 2, 5, 8 (dashed) correspond to estimates obtained for measurement errors of 0.4% of 

Tmax; while curves 3, 6, 9 (dot-dash) are for  a = 3%. Here curves 1, 2, 3 correspond to the heat transfer coefficient a; 

curves 4, 5, 6 to the thermal conductivity A, and curves 7, 8, 9 to the thermal flux q. The maximum deviation of the 

solution from its nominal values does not exceed 8%. The coefficients a(r) which were determined made it possible to 

determine the thermal flow density. Naturally, the most qualitative results were obtained for measurements on the 

boundary where o~(r) was determined, although no loss of stability was observed in other cases. 
Studies were made in which A(T) was specified in the form of  the sinusoid A(T) = T/200 

exp(T/2OO)sin(,rT/150) + 30, with measurement error to within 5% of Tma x. Here an increase of  error did not result in 

a loss of stability. Actually, confirmation of this is shown by the results of  identification of A(T) and A(r) in Fig. 2 

(curves 1 and 3 are, respectively, nominal values of ;~(T) and a(r), while curves 2 and 4 are estimates of these same 

characteristics). The thermal flux density q(r) was also obtained at the same time (curve 5 is the nominal value, curve 

6 is an estimate). 
We note that in the identification of  several parameters an imprecision in obtaining one of  them gives rise to a 

corresponding imprecision in obtaining the other. As for reconstructing the temperature field, the difference of the 

estimating values f rom the true values does not exceed 0.8%. 
Simultaneous identification of )~(T) and cv(T) was carried out for  the same plate with heat transfer coefficients 

on the other boundary given by a(r) = 25 + 0.085r. 
To locate "measurements" we solved the direct problem with )~(T) = 43.49 + 10.61-10-ST --  23.02-10-6T2; 

cv(T ) = (--1.485 + 26.65-10-ZT --  41.19-10-6T 2 + 23.42"10-9TS)'106; and with initial distribution T O = 293"C. The 

time step was chosen to be equal to Ar = 75 see. As "measurements" in solving IPHC, we took temperature at the nodes 
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4, 7, and 10, "decomposed" Gaussian white noise with a varying from 0.1% to 3% of  Tma x. Initial approximations for 

the desired estimates were the following: ~o/o = 40; ~vo/0 = 3"5"10~ and To/o = 280. Results of the identification are 

shown in Fig. 3, where curves 1, 2 (solid lines) are, respectively, specific volume heat capacity and thermal 

conductivity, having been used in solution of  the direct problem; curves 3, 4 (dashed) are characteristics obtained for 

a = 0.1% of  Tma x, while curves 5 and 6 (dash--d0t) are for  a = 3% of Tma x. As is evident f rom these graphs, an 

increase in a f rom 0.1% to 3% results in an error increase in the estimates to 8% without a breakdown in stability. To 

investigate regularity of the identification process the problem considered above was solved for a specific volume heat 

capacity given in the form of  the triangular impulse: 

(1 , 5 - t 0 6 +  8-10aT; T ~ 6 8 3 ~ C ;  
cv(T) = LI"'2,428--8.10aT; T g~> 68,3 ~ 

All other parameters were left unchanged. Figure 4 shows the estimates corresponding to a = 0.1% of  Tm~ (dash-dot 

curves 3 and 4 are for  cv(T) and )~(T), respectively) and for a = 3% of Tma x (dashed curves 5 and 6 for cv(T) and 

A(T), respectively); it also shows the nominal values (continuous curves I and 2 for cv(T) and A(T), respectively). Here 

an increase in measurement errors f rom 0.1% to 3% results in a corresponding growth of  errors in the estimates from 

2% (curves 3 and 4) to 10% (curves 5 and 6) without loss of  stability. In both cases the error in the temperature field 
did not exceed 1%. Thus, the form of the functions being identified has practically no effect  on regu]arky of the 
solutions obtained with the aid of an iterational filter. 

The most complicated IPHC is the problem of simultaneously identifying ~(T), cv(T), and ~(r) or q(r). As the 

object of study we took the very same plate, but with boundary conditions of the third kind on both surfaces. To 

determine "measurements" we solved the direct problem with a -- 25 + 2r and T e --- 1400~ on one of the surfaces and 

with c~ = 200 and T e = 293~ on the other. As TPC we took curves 1 and 2 (see Fig. 3). The space-time grid steps 

were: h = 0.01 m, Ar = 10 sec. As "measurable" quantities we took temperatures "distorted" by white noise (a = 3%) at 

nodes 2, 4, 7, 10. Initial estimates of  the parameters being sought were: )~o/o -- 40, Cv0/o = 3.5.10 ~ %/0 = 50; To/o = 
280. In the first stage we identified A(T) and a(r). Here the covariant matrix of dimensions 13 x 13 had the form 

Po/o x,'~ = diag {(1.6; 1.6; 1.6; 1.6; 1.6; 1.6; 1.6; 1.6; 1.6; 1.6; 1.6; 10s; 3.105).104}. At the second stage (that of 

determining cv(T)), in the covariant matrix Po/oeV of  dimensions 12 • 12, the first 11 elements were the same, while 
the twelfth was chosen equal to 1.4-104 . 

Results obtained in solving this IPHC are shown in Fig. 5, where curves 1, 3, 5 are nominal characteristics of 

a(r), ;~(T), and cv(T ), respectively, and curves 2, 4, 6 are estimates of  these same characteristics corresponding to tr = 

3% of Tm~. Such an error in measurements leads to oscillations of the estimates about the nominal values with an 
amplitude of 25%. With measurement error decrease to 0.1%, the maximum amplitude of the oscillations decreases up 
to 5%. 

Returning to the uniqueness of  the solution of  the problems described, we readily note that with an increase in 

temperatures the accuracy of  estimates of TPC (A(T) in Fig. 1; ~(T) and cv(T) in Fig. 3; ~(T): in Fig. 4) becomes 

worse, and with an increase in time a similar situation (deterioration of  the results) may be observed also for 

conditions of  heat transfer (c~(r) in Fig. 1). It is entirely possible that this is a consequence of a violation of the 
conditions of the uniqueness theorem in [8]. 

Conclusion. The algorithm and the solution results presented here for  systematic problems testify to the 
effectiveness of the pointwise identification method presented for the simultaneous determination of several 

parameters of  a thermal system and enable us to make a decision concerning the possibility of  identifying some 
thermal parameters in real processes. 

NOTATION 

Here A(T) is thermal conductivity; T, temperature; cv(T), specific volume heat capacity; a(r), heat transfer 
coefficient; q(r), thermal flux; x, y, z, r space and time coordinates; j ,  S, number of  iterations; k, number of time 

step; h and Ar, space and time steps; b and IN, subscripts indicating boundary and interior nodes; Te, temperature of 
the medium; 1I, preceding step; a, mean-square error; P, covariant matrix; ^, estimates of  parameters and temperatures 
being identified; i, node number in spatial grid; Tin, mean integral temperature. 
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NUMERICAL-ANALYTIC ALGORITHM O F  T H E  S T E F A N  P R O B L E M  

SOLUTION 

N.  A.  M u k h e t d i n o v  UDC 536.42:551.34 

An algorithm is developed for the numerical solution of the Stefan problem for boundary conditions of 
the first, second, and third kinds, respectively, on the surface of a freezing (thawing) layer by using the 
solution of  the heat conduction equation in the form of  a series in the spatial coordinate including two 
derivatives of  the time functions and their derivatives. An approximate estimation of the proposed 
method is given in an example of computing the freezing of  water in a reservoir. 

The necessity to determine the temperature state of objects being investigated with the natural-time change in 
the environment and the parameters governing it taken into account (the wind velocity, solar radiation, snow cover) 
occurs in solving many practical problems of engineering glaciology, geocryology, and metallurgy. Determination of 
the phase transition front of freezing water, soil, or a cooling metal ingot in a general formulation is a complex 
problem whose methods of solution still remain largely undeveloped [1-3]. This refers mainly to multidimensional 
problems with moving boundaries and one-dimensional problems with boundary conditions different from the first 
kind. Boundary conditions of the first kind for which the solution of the Stefan problem has been developed 
sufficiently completely assume the temperature of the surface of the freezing (thawing) massif to be given. In practice 
this yields results that are only qualitatively in agreement with the actual process. The algorithm considered below for 
the solution does not impose similar constraints and is similar in its content to the method of differential series [4, 5] 
but differs favorably from the latter in its clearness and simplicity. The formulated problem can be solved for any 
boundary conditions by an insignificant modification of one formula. Moreover, the temperature field of the freezing 
(thawing) or cooling layer needed for stress state computations and the motion law ~(r) of the phase interface 
boundary can be determined. The mathematical formulation of the problem has the form 

Otl(x , .~) 02tl (x, -c) (1) 
- -  al  , x E [0, ~ (x)], x E [0, ~o], 

Ox ax 2 

ot2 (x, ~) ozt~ (x, ~) 
- ao , x E [~ (% ~ l ,  "~ E [0, ~ l ,  

0"~ - O x  2 (2) 
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